ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ САМАРСКОЙ ОБЛАСТИ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №1 "ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР" ИМЕНИ ГЕРОЯ СОВЕТСКОГО СОЮЗА В.И. ФОКИНА С. БОЛЬШАЯ ГЛУШИЦА МУНИЦИПАЛЬНОГО РАЙОНА БОЛЬШЕГЛУШИЦКИЙ САМАРСКОЙ ОБЛАСТИ

Рассмотрено на заседании	«Проверено»	Утверждено
школьного методического	Зам. директора по учебной	приказом директора
объединения	работе	от <u>30.06.2023 г.</u> № <u>201-ОД</u>
Руководитель м/объединения		И.о. директора школы
/М.С. Богомолова	Е.В. Писаренко	О.А. Соколова
Протокол № <u>5</u> от	« <u>29</u> » <u>июня</u> 2023 г.	<u>«</u> »2023 г.
« <u>28</u> » <u>июня</u> 2023 г.		

Рабочая программа по внеурочной деятельности «Факультатив по химии «Избранные вопросы органической химии»» по направлению «Внеурочная деятельность по предметам школьной программы» лля 10-х классов

составил учитель химии А.В. Сиднина

с. Большая Глушица

Пояснительная записка

Факультатив предназначен для учащихся 10 класса, изучающих химию на базовом уровне. Курс рассчитан на 34 часа, т.е. 1 урок в неделю. Данный курс является *предметно-ориентированным*.

Программа курса является дополнением к систематическому курсу химии.

Цель курса: углубление и расширение знаний старшеклассников повопросам курса органической химии средней школы.

с другой стороны оказание помощи в подготовке учащихся к сдаче единого государственного экзамена по химии.

Задачами курса являются:

- Ликвидация пробелов в знаниях старшеклассников.
- Конкретизация, упрочение и углубление знаний по наиболее сложным вопросам школьного курса химии
- Развитие умения логически рассуждать, планировать, дифференцировать, устанавливать причинно-следственные связи.
- Развитие навыков самостоятельной работы.

Элективный курс является логичным и актуальным дополнением к основному курсу химии.

Реализация данного курса предполагает сочетание таких форм и методов обучения, как лекции, семинары, работа в парах и малых группах, самостоятельная работа.

Использование такого метода обучения как сравнение (в программе предлагается сравнить строение и свойства разных групп органических веществ) позволит учащимся систематизировать знания по различным классам органических веществ, установить взаимосвязи между классами.

Виды и формы контроля. По результатам освоения элективногокурса проводится итоговая *контрольная работа*, успешное выполнение которой (более 60%) позволяет учащимся получить зачёт.

Учебно-тематический план

1	Особенности электронного			
1.	строения, химических свойств и	12	2	10
	получения углеводородов	12	2	10
	Особенности электронного строения			
	углеводородов (типы гибридизации		2	
	атомов углерода, σ- и π-связи).	<u> </u>	<u> </u>	_
	Сравнение электронного строения, химических свойств и получения	2		2
	_	<u> </u>	-	2
	алканов и циклоалканов			
	Сравнение электронного строения,	2		2
	химических свойств и получения	2	-	2
	алкенов и алкинов			
	Сравнение электронного строения,			
	химических свойств и получения	2	-	2
	алканов, алкенов и аренов			
	Сравнение электронного строения,			
	химических свойств и получения	2	-	2
	бензола и толуола			
	Особенности электронного строения и			
	химических свойств диенов с	2	-	2
	сопряженными двойными связями			
2.	Окислительно-восстановительные	6	_	6
	реакции в органической химии.	O		O
	Определение степени окисления атома			
	углерода в органических веществах.			
	Использование метода электронного	2	_	2
	баланса для расстановки	<i></i>	_	2
	коэффициентов в уравнениях реакций			
	с участием органических веществ.			
	Мягкое и жесткое окисление алкенов,	4		4
	окисление аренов, алкинов.	'+	-	4
3.				
	строения, химических свойств,	10	2	O
	получения кислородсодержащих	10	2	8
	органических веществ			
	Классификация кислородсодержащих	2		
	органических соединений.	2	2	-
	Сравнение электронного строения,			
	химических свойств и получения		_	2
	·	_	_	<i>L</i>
	I СПИРТОВ И ФЕНОПОВ			
	спиртов и фенолов	_		
	спиртов и фенолов Сравнение электронного строения, химических свойств и получения	2	-	2

	альдегидов и кетонов.			
	Сравнение электронного строения предельных и непредельных одноосновных карбоновых кислот.	2	ı	2
	Окисление альдегидов и карбоновых кислот	2	-	2
4.	Гидролиз в органической химии	2	-	2
	Гидролиз бинарных соединений. Щелочной гидролиз галогеналканов. Гидролиз солей органических кислот. Гидролиз сложных эфиров, ди- и полисахаридов, пептидов.	2	1	2
5.	Генетическая связь между классами органических веществ	4	-	4
	Генетическая связь между углеводородами	2	-	2
	Итоговый контроль. Контрольная работа: «Взаимосвязь между углеводородами и кислородсодержащими соединениями».	2	-	2

Программа

Тема № 1 (12 часов) Особенности электронного строения, химических свойств и получения углеводородов

Особенности электронного строения углеводородов (типы гибридизации атомов углерода, σ - и π -связи).

Сравнение электронного строения, химических свойств и получения: алканов и циклоалканов, алкенов и алкинов, алканов, алкенов и ароматических углеводородов, бензола и толуола. Особенности электронного строения и химических свойств диенов с сопряженными двойными связями

Тема №2 (6 часов) Окислительно-восстановительные реакции в органической химии (на примере углеводородов).

Определение степени окисления атома углерода в органических веществах.

Использование метода электронного баланса для расстановки коэффициентов в уравнениях реакций с участием органических веществ. Окислительно-восстановительные реакции в органической химии: мягкое и жесткое окисление алкенов, окисление аренов, алкинов.

Тема №3 (10) Особенности электронного строения, химических свойств, получения кислородсодержащих органических веществ

Классификация кислородсодержащих органических соединений.

Сравнение электронного строения, химических свойств и получения: спиртов и фенолов, альдегидов и кетонов, предельных и непредельных одноосновных карбоновых кислот.

Тема №4 (2) Гидролиз в органической химии

Гидролиз бинарных соединений. Щелочной гидролиз галогеналканов. Гидролиз солей органических кислот. Гидролиз сложных эфиров, ди- и полисахаридов, пептидов.

Тема №5 (4) Генетическая связь между углеводородами и кислородсодержащими органическими веществами

Генетическая связь между углеводородами. Конструктивные и деструктивные реакции.

Взаимосвязь между углеводородами и кислородсодержащими соединениями. Реакции галогенирования и дегалогенирования, гидратации и дегидратации, гидрогалогенирования и дегидрогалогенирования.

Взаимосвязь между кислородсодержащими и азотсодержащими органическими веществами.

Литература

- 1. Карцова А.А., Лёвкин А.Н. Химия: 10 класс: профильный уровень: учебник для учащихся общебразовательных учреждений. М.; Вентана-Граф, 2012.
- 2. Химия: ЕГЭ: Учебно-справочные материалы для 11 класса (Серия «Итоговый контроль: ЕГЭ»). М.; СПб.: Просвещение, 2011.
- 3. Химия: КТМ: Контрольно-тренировочные материалы для 11 класса (Серия «Итоговый контроль: ЕГЭ»). М.; СПб.: Просвещение, 2011.
- **4.** Химия: КТМ: Контрольно-тренировочные материалы для 11 класса (Серия «Итоговый контроль: ЕГЭ»). М.; СПб.: Просвещение, 2012.

Методические рекомендации по организации занятий курса.

На семинарским занятиях рекомендуем учителям предложить учащимся заполнение таблиц. Такие таблицы позволят учащимся систематизировать знания по предложенным темам, а также выявить сходство и различие в строение и свойствах веществ и, тем самым, обобщить и систематизировать знания по курсу органической химии.

Предельные углеводороды Задания для учащихся:

- 1) заполнить таблицу, составив соответствующие уравнения реакций;
- 2) сделать вывод о сходстве и различии строения, химических свойств и получения алканов и циклоалканов

	Алканы	Циклоалканы
Тип гибридизации атомов		
C		
Валентный угол (угол		
между гибридными орбиталями)		
	Химические свойс	тва
Реакции замещения		
1) Галогенирование (на	Бутан + хлор	Циклопентан + хлор
свету)	Бутан + бром	
2) Нитрование (реакция	Бутан	Циклопентан + азотная
Коновалова)	+азотная кислота	кислота (при нагревании)
,	(при нагревании)	,
Реакция изомеризации	Изомеризаци	Изомеризация
(катализатор – хлорид алюминия)	я бутана	метилциклобутана
Крекинг	Крекинг	-
	бутана:	
	происходит	
	расщепление С-С	
	связи, получаются	
	алкен и алкан	
Горение	Образуются	Образуются
	углекислый газ и	углекислый газ и вода
	вода	
Термическое разложение	Образуются	Образуются водород и
	водород и сажа	сажа
Присоединение	-	Происходит разрушение
		малых циклов
1) гидрирование	-	Циклопропан + водород
2) галогенирование	-	Циклопропан + хлор
3) гидрогалогенирование	-	Циклопропан+хлоровод
		ород
	Получение	
Карбидный способ	Карбид	-

	алюминия + вода	
Реакция Вюрца	Хлорэтан +	Хлорциклобутан +
	натрий (при	хлорметан + натрий (при
	нагревании)	нагревании)
Дегалогенировани	e -	1,4 –дихлорбутан +цинк
дигалогеналканов		

Непредельные углеводороды

Задания для учащихся:

- 1) заполнить таблицу, составив соответствующие уравнения реакций;
- 2) сделать вывод о сходстве и различии строения, химических свойств и получения алкенов и алкинов

химических своиств и	Алкены	Алкины
Тип гибридизации атомов С		
Валентный угол		
		ı
Реакции присоединеия		
1) Гидрирование (в присутствии	пропен +	пропин + водород
кат)	водород	
2) галогенирование	пропен+бром	пропин+бром
	(раствор)	(раствор)
3) гидрогалогенирование	пропен +	пропин +
·	бромоводород (правило	бромоводород (правило
	Марковникова)	Марковникова)
4) гидратация	пропен + вода	пропин + вода
4) гидратация	пропен вода (правило	пропин вода (правило Марковникова,
	Марковникова)	кат. – соли ртути)
Горение	Образуются	Образуются
Торение	углекислый газ и вода	углекислый газ и
	yivieniioiibiii rus ii bedu	вода
Термическое разложение	Образуются	Образуются
	водород и сажа	водород и сажа
Замещение атомов	-	Пропин + натрий
водорода на металл		Пропин +
•		аммиачный р-р оксида
		серебра
Полимеризация (условия:	Полимеризация	Тримеризация
катализатор, температура,	пропена	пропина (в присутствии
давление)		активированного угля)
	<u> </u> Получение	
Карбидный способ	-	Карбид кальция +
I "		вода
Дегидрагалогенирован	2-хлорпропан +	1,2-
ие	спиртовой р-р щелочи	дихлорпропанн+
	(правило Зайцева)	спиртовой р-р щелочи
		2,2-дихлорбутан+
		спиртовой р-р щелочи

		(правило Зайцева)
Дегалогенирование	1.2-	-
дигалогеналканов	дихлорпропан + цинк	
Дегидратация спиртов	Дегидратация	-
	пропанола-2 в	
	присутствии конц.	
	серной кислоты	

Арены Задания для учащихся

- 1. Общая формула
- 2. Составить структурные формулы аренов: бензол, толуол, этилбензол
- 3. Определить тип гибридизации каждого атома углерода в бензоле, толуоле, этилбензоле
- 4. Рассмотреть изомерию аренов на примере пропилбензола
- 5. Заполнить таблицу:

Сравнение химических свойств бензола, этана и этена

Бензол	Этан	Этен		
Benson	Реакции замещения			
Бензол + хлор (кат.	Этан + хлор (на	-		
FeCl ₃)	свету)			
Бензол +	Этан + азотная	-		
азотная(кат.серная)				
Бензол + хлорметан	-	-		
(кат. AlClз)				
	Реакции присоединения			
Бензол + водород (кат)	-	Этен + водород		
		(кат)		
Бензол + хлор (на свету)	-	Этен + хлор		
-	-	Этен + хлороводород		
-	-	Этен + вода		

Сравнение химических свойств и получения бензола и толуола

Бензол	Толуол
Реак	ции замещения
Бензол $+$ хлор (кат. $FeCls$)	T олуол $+$ хлор (кат. F e C l $_3$), ϵ орто u
	пара-положениях происходит замещение
Бензол + азотная(кат.серная)	Толуол + азотная(кат.серная), в
	орто и пара-положениях происходит
	замещение
Бензол + хлорметан (кат. AlClз)	Толуол + хлорметан (кат. AlClз), в
	орто и пара-положениях происходит
	замещение
	Толуол + хлор (на свету).
	Происходит замещение в радикале
Реакци	и присоединения
Бензол + водород (кат)	Толуол + водород (кат)
Бензол + хлор (на свету)	
	Получение
	Из алканов

Дегидрирование и циклизация	Дегидрирование и циклизация	
гексана	гептана	
Из циклоалканов		
Дегидрирование циклогексана	Дегидрирование метилциклогексана	
Другие способы		
Тримеризация этина (в присут. акт. угля)	Бензол + хлорметан (кат. AlClз)	

Диеновые углеводороды (алкадиены) Задания для учащихся

- 1. Общая формула
- 2. Классификация:
- диены с кумулированными двойными связями (двойные связи рядом, неустойчивые диены)

Привести 2 примера, назвать вещества, указать тип гибридизации каждого атома С

- диены с сопряженными двойными связями (двойные связи находятся через одну простую)

Привести 2 примера, назвать вещества, указать тип гибридизации каждого атома С

- диены с изолированными двойными связями

Привести 2 примера, назвать вещества, указать тип гибридизации каждого атома С

- 3. Изомерия диенов:
- углеродного скелета
 - взаимного расположения двойных связей
 - межклассовая с алкинами
 - пространственная (цис-трансизомерия)

Pазобрать изомерию на примере C_5H_8

- 4. Химические свойства сопряженных диенов:
- гидрирование бутадиена-1,3 (2 направления реакции)
 - хлорирование бутадиена-1,3(2 направления реакции)
 - гидрогалогенирование бутадиена-1,3(2 направления реакции)
 - полимеризация бутадиена-1,3
 - 5. Получение:
 - дегидрогалогенирование
 - 1,4-дихлорбутан + 2KOH (спирт)
 - синтез Лебелева из этанола
 - 6. Составить уравнения реакций полимеризации:
 - А) изопрена (2-метилбутадиена-1,3)
 - Б) хлоропрена (2-хлорбутадиена-1,3

Спирты и фенолы

Задания для учащихся:

- 1) заполнить таблицу, составив соответствующие уравнения реакций;
- 2) сделать вывод о сходстве и различии химических свойств предельных одноатомных спиртов и фенолов

Этанол	Фенол
Кислотны	е свойства
Взаимодействие с натрием	Взаимодействие с натрием
-	Взаимодействие с гидроксидом
	натрия
Взаимодействие с г	галогенводородами
Взаимодействие с хлороводородом	-
Образование просты	х и сложных эфиров
Межмолекулярная дегидратация	-
Реакция этерификации	-

Примечание: простые и сложные эфиры образуют производные фенола

Спирты и фенолы

Задание для учащихся по классификации спиртов: заполнить таблицы, составив структурные формулы

1. ПО КОЛИЧЕСТВУ ГИДРОКСОГРУПП

Одноатомные	Многоатомные
Метиловый (метанол)	Этиленгликоль
Этиловый (этанол)	Глицерин
	Сорбит

2. ПО РАДИКАЛУ

Предельные	Непредельные	Ароматические
Пропиловый	Виниловый	Бензиловый
Изопропиловый		

3. ПО РАСПОЛОЖЕНИЮ ГИДРОКСОГРУППЫ

Первичные	Вторичные	Третичные
Первичный бутиловый	Вторбутиловый	Третбутиловый
		-
Изобутиловый		

Материалы по теме «ОВР в органической химии»

1) мягкое окисление алкенов

пропен + $KMnO_4 + H_2O$

2) жесткое окисление алкенов

пропен +
$$KMnO_4 + H_2SO_4$$

пентен-2 + $KMnO_4 + H_2SO_4$
2-метилбутен-1+ $KMnO_4 + H_2SO_4$

3) окисление аренов

толуол +
$$KMnO_4 + H_2SO_4$$

этилбензол + $KMnO_4 + H_2SO_4$
пропилбензол+ $KMnO_4 + H_2SO_4$
изопропилбензол + $KMnO_4 + H_2SO_4$

4) окисление алкинов

этин +
$$KMnO_4 + H_2O$$

5) окисление спиртов

метанол
$$+$$
 KMnO₄ $+$ H₂SO₄

6) окисление альдегидов этаналь

$$+\ KMnO_4 + H_2SO_4$$

Задания для итогового контроля

Задания для учащихся по генетической связи между классами неорганических веществ

- 1. $Memah \to xлорметаh \to этаh \to xлорэтаh \to этеh \to этанол \to этеh \to 1,2 дихлорэтан \to этин \to этаналь \to ацетат натрия \to метан$
- 2. Пропан \rightarrow 2-бромпропан \rightarrow пропен \rightarrow пропанол-2 \rightarrow пропен \rightarrow 1,2- дихлорпропан \rightarrow пропин \rightarrow пропанон \rightarrow пропанол-2 \rightarrow изопропилацетат уксусная кислота
- 3. Бутен -1 \to 2-хлорбутан \to бутен-2 \to 2,3-дихлорбутан \to бутин-2 \to бутен-2 \to пропионовая кислота \to пропионат натрия \to этан